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Abstract
We show that, under twistor construction, the only finite-dimensional reduction
of the dispersionless Dym hierarchy which can be characterized by a free energy
is the two-reduction model with Lax operator of the form λ = up + u0 + p−1.
The primary variables u and u0 can be expressed in terms of second derivatives
of the associated free energy and the hierarchy flows can be written as a set of
dispersionless Hirota equations.

PACS number: 02.30.Ik

1. Introduction

An important class of dispersionless integrable hierarchies (see [1] for a review) is the one
which can be formulated in terms of Laurent series of the form � = ∑n

i aip
i with respect to

the Poisson bracket { , } defined by

{f (x, p), g(x, p)} = ∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
. (1.1)

Denoting the projections by ��k = ∑
i�k aip

i and �<k = ∑
i<k aip

i then from Lie–
Poisson algebra point of view [2], the decomposition � = ��k ⊕ �<k with respect to
the Poisson bracket (1.1) is a Lie subalgebra decomposition only for k = 0, 1, 2, namely
{��k,��k} ⊆ ��k and {�<k,�<k} ⊆ �<k . Consequently, one can introduce dispersionless
Lax hierarchies according to the above decompositions as

∂λ

∂ti
= {(λi/n)�k, λ}, λ ∈ � (1.2)

which provides a system of evolution equations on the coefficients of λ for each of the
following three classes: the dispersionless Kadomtsev–Petviashvili (dKP) hierarchy [3–5] for
k = 0, the dispersionless modified Kadomtsev–Petviashvili (dmKP) hierarchy [6, 7] for k = 1
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and the dispersionless Dym (dDym) hierarchy [8] for k = 2. Among them we shall focus
on the dDym hierarchy since its integrability properties are less investigated. Although some
progresses on the dDym hierarchy have been made in the past few years, such as bi-Hamiltonian
structure, Miura map, hodograph solutions, additional symmetries and twistor construction,
etc (see e.g. [8–14]), the existence problem of the primary free energy (free energy for short)
for the dDym hierarchy has not been explored. In the context of integrable hierarchies/2d
topological field theory correspondences, the dispersionless limit of the logarithm of the
τ -function corresponds to the free energy of some topological field theory. In particular,
the coefficients of the expansion of the free energy in flat coordinates provide the values of
the correlation functions at genus zero (see, e.g., [5,15–21] and references therein). Also the
free energy is governed by a set of equations called dispersionless Hirota equations [1, 22, 23]
that are intimately related to the Witten–Dijkgraff–Verlinde–Verlinde (WDVV) equations of
associativity [20, 24]. Thus it is an important issue for investigating those dDym systems that
can be characterized by a free energy and to study their underlying topological field theories.

In this work, we attempt to address this problem for finite-dimensional reductions of the
dDym hierarchy through the analysis of S function which can be viewed as the WKB phase
function of the Baker–Akhiezer function [3]. It was also introduced by Krichever in the
context of topological field theories for the dKP hierarchy [5] and then elaborated by Takasaki
and Takebe in the twistor construction for the cases of dKP and dToda [1, 25–27]. Using
twistor construction we shall show that the only finite-dimensional reduction of the dDym
hierarchy which can be characterized by a free energy is the two-reduction model with Lax
operator of the form λ = up + u0 + p−1. A peculiar property of the two-reduction model is
that, besides the Lax equations (1.2), it also contains an extra flow generated by the Hamiltonian
B0 = (log λ)�2, resembling the log flow introduced by Krichever in the construction of the
Whitham hierarchy [17]. Due to this extra flow, it turns out that the primary variables u and
u0 can be expressed in terms of second derivatives of the free energy and the hierarchy flows
can be written as a set of dispersionless Hirota equations.

Our presentation is organized as follows. In section 2, after introducing the Lax form of the
dDym hierarchy we re-formulate it in a dToda-like fashion to incorporate finite-dimensional
reductions. In section 3, we briefly recall the dressing operator approach for the Lax operators
and associated Orlov–Schulman [1, 28] operators. The twistor construction for solutions of
the dDym hierarchy is also given. In sections 4 and 5 we show that the S functions introduced
in the twistor construction can be characterized by a free energy only for the two-reduction
model which has a Lax operator of the form λ = up + u0 + p−1. In section 6, we derive
the dispersionless Hirota equations of the two-reduction model. Concluding remarks are
presented in section 7.

2. Extended dDym hierarchy

The dDym hierarchy [8] (see also [9, 10]) is defined by the Lax equation
∂λ

∂tn
= {Bn, λ}, Bn = (λn)�2, (2.1)

where the Lax operator λ is a Laurent series of the form

λ = up + u0 + u1p
−1 + u2p

−2 + · · · .
Since B1 = 0, ui do not depend on t1. The first member of the Lax flows (2.1) is the so-called
dDym equation in (2 + 1)-dimensions

ut = 3

4

1

u

[
u2∂−1

x

(uy

u2

)]
y
, (2.2)
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where we denote t2 = y and t3 = t . Equation (2.2) is just the dispersionless limit of the
ordinary (2 +1 )-dimensional Dym equation [29] by dropping the dispersion term.

To study finite-dimensional reductions and being motivated by the dispersionless Toda
(dToda) system [1, 25, 27], we formulate the dDym hierarchy in terms of two Laurent series
λ and λ̂ of the form:

λ = up +
∞∑

n=0

unp
−n, λ̂−1 = p−1 +

∞∑
n=0

ûnp
n, (2.3)

that obey the Lax equations

∂λ

∂tn
= {Bn, λ}, ∂λ̂

∂tn
= {Bn, λ̂},

∂λ

∂t̂n
= {B̂n, λ}, ∂λ̂

∂ t̂n
= {B̂n, λ̂}, (2.4)

where Bn = (λn)�2, B̂n = (λ̂−n)�1 and the coefficient functions un and ûn depend on the
variables (x, t2, t3, . . .) and (t̂−1, t̂1, . . .). In particular, since B̂−1 = p, un and ûn depend on
t̂−1 and x only through the linear combination t̂−1 + x and we may simply put t̂−1 = x.

The Lax equations of λ and λ̂ are equivalent to the zero-curvature equations

∂Bm

∂tn
− ∂Bn

∂tm
+ {Bm,Bn} = 0,

∂B̂m

∂t̂n
− ∂B̂n

∂t̂m
+ {B̂m, B̂n} = 0, (2.5)

∂Bm

∂t̂n
− ∂B̂n

∂tm
+ {Bm, B̂n} = 0,

that guarantee the commutativity of the Lax equations (2.4). Since (2.4) is an extension
of the dDym hierarchy by introducing the time parameters t̂ n, we call (2.4) the extended
dDym (EdDym) hierarchy. In addition to the (2 + 1)-dimensional dDym equation (2.2) which
corresponds to the first equation of (2.5) for n = 2,m = 3, the simplest (2 + 1)-dimensional
equation involving t̂ n is given by the third equation for n = 1,m = 2 as

ut̂1
+ u2

[
2u−1∂−1

y u2
(
∂−1
y u2

)
xx

]
x

= 0. (2.6)

We refer it to the EdDym equation. Furthermore, using the Lax equations (2.4) and the fact
that

∫
res{A,B} = 0 for any two Laurent series A and B, one can verify easily that the EdDym

hierarchy equips an infinite number of conserved quantities defined by

Hn = 1

n

∫
res(λn dp), Ĥn = 1

n

∫
res(λ̂−n dp), n = 1, 2, . . .

where we denote the residue of � as res(� dp) = a−1.

Remark. In [13] an interesting generalization called r-dToda hierarchy (r ∈ Z) was
formulated, in which the Lax equations are defined by the generalized Poisson bracket
{�1,�2} = pr(∂�1/∂p∂�2/∂x − ∂�1/∂x∂�2/∂p) [9] with respect to the subalgebra
decomposition � = ��1−r ⊕ �<1−r . As r = 0 the above generalized Poisson bracket
reduces to (1.1); however, the corresponding dToda-type system is similar to but different
from the EdDym system due to different Lie algebraic splittings of �.



2626 Y-T Chen et al

3. Dressing formulation and twistor construction

Let (λ, λ̂) be a solution of the Lax equations (2.4) and has the form (2.3). Then there exist
Laurent series � = ∑∞

n=−1 �n(x, t, t̂)p−n and �̂ = ∑∞
n=2 �̂n(x, t, t̂ )pn such that

λ = ead�(p), λ̂ = ead�̂(p) (3.1)

with dressing functions � and �̂ defined by

∇tn,�� = −(λn)�1, ∇tn,�̂
�̂ = (λn)�2,

(3.2)
∇t̂ n,�� = (λ̂−n)�1, ∇t̂ n,�̂

�̂ = −(λ̂−n)�2,

where adA(B) = {A,B} and ∇tn,AB ≡ ∑∞
k=0(adA)k∂tnB/(k + 1)!. Using the formula

∂n eadA(B) = eadA(∂nB) + {∇tn,AA, eadA(B)} [1] and (3.2) it is easy to show that the dressed
operators λ and λ̂ satisfy the Lax equations (2.4).

Given the dressing form (3.1), one can also introduce the associated Orlov–Schulman
operators [1, 28] (M,M̂) as

M = ead�

(
x +

∞∑
n=2

ntnp
n−1

)
= ead� eadt (p)(x),

M̂ = ead�̂

(
x −

∞∑
n=1

nt̂np
−n−1

)
= ead�̂ eadt̂ (p)(x),

where t (p) = ∑∞
n=2 tnp

n and t̂ (p) = ∑∞
n=1 t̂ np

−n. They have the following expansions,

M =
∞∑

n=2

ntnλ
n−1 +

∫ x 1

u
+

∑
n=1

vnλ
−n−1,

M̂ = −
∞∑

n=1

nt̂nλ̂
−n−1 + x +

∑
n=2

v̂nλ̂
n−1,

where vn and v̂n are also functions of x, tn and t̂ n and satisfy the Lax equations

∂M
∂tn

= {Bn,M}, ∂M̂
∂tn

= {Bn,M̂},
(3.3)

∂M
∂t̂n

= {B̂n,M}, ∂M̂
∂t̂n

= {B̂n,M̂},

and the canonical relations

{λ,M} = {λ̂,M̂} = 1. (3.4)

The integrability of the EdDym hierarchy can be characterized by the 2-form

ω = dp ∧ dx +
∑
n=2

dBn ∧ dtn +
∑
n=1

dB̂n ∧ dt̂ n (3.5)

which is closed dω = 0, and ω ∧ ω = 0 implies the zero-curvature equations (2.5). The
conjugate pairs (λ,M) and (λ̂,M̂) thus provide the Darboux coordinates in a neighbourhood
of p = ∞ and p = 0, respectively. In the overlapping domain, the two Darboux coordinates
are related by

ω = dλ ∧ dM = dλ̂ ∧ dM̂ (3.6)

which yields the Lax equations (2.4), (3.3) and the canonical relation (3.4).
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Having established the integrability structure of the EdDym hierarchy we can give a
construction of solutions based on the twistor construction (or Riemann–Hilbert problem)
similar to that of the dToda hierarchy [1]. Let (λ,M) and (λ̂,M̂) have the form defined
above. Then it can be shown [12] that if the given functions f (p, x), g(p, x), f̂ (p, x) and
ĝ(p, x) satisfy

{f (p, x), g(p, x)} = 1, {f̂ (p, x), ĝ(p, x)} = 1,

then the functional equations

f (λ,M) = f̂ (λ̂,M̂), g(λ,M) = ĝ(λ̂,M̂)

give a solution (λ,M, λ̂,M̂) which satisfies (2.4), (3.3), and the canonical relation (3.4).
We call (f, g, f̂ , ĝ) the twistor data of the associated solution. In fact, besides the solution
structure the twistor-theoretic construction has been used to study additional symmetries and
conformal map of some dispersionless integrable hierarchies (see, e.g., [1, 30, 31]).

4. S function and twistor reduction

From expressions (3.5) and (3.6) of the 2-form ω there exist functions S and Ŝ of the form

S =
∑
n=2

tnλ
n + φ1λ + φ0 −

∑
n=1

vn

n
λ−n, Ŝ =

∑
n=1

t̂ nλ̂
−n

+ xλ̂ +
∑
n=2

v̂n

n
λ̂

n
(4.1)

where φ1 = ∫ x 1/u and φ0 = − ∫ x
u0/u, such that

dS = M dλ + p dx +
∑
n=2

Bn dtn +
∑
n=1

B̂n dt̂ n,

dŜ = M̂ dλ̂ + p dx +
∑
n=2

Bn dtn +
∑
n=1

B̂n dt̂ n

or, equivalently,

M = ∂S

∂λ

∣∣∣∣
x,t,t̂ fixed

, M̂ = ∂Ŝ

∂λ̂

∣∣∣∣∣
x,t,t̂ fixed

,

(4.2)

p = ∂S

∂x

∣∣∣∣
λ,t, t̂fixed

, p = ∂Ŝ

∂x

∣∣∣∣∣
λ̂,t,t̂ fixed

,

Bn = ∂S

∂tn

∣∣∣∣
λ,x,tm�=n,t̂ fixed

, Bn = ∂Ŝ

∂tn

∣∣∣∣∣
λ̂,x,tm�=n,t̂ fixed

, (4.3)

B̂n = ∂S

∂t̂n

∣∣∣∣
λ,x,t,t̂m�=n fixed

, B̂n = ∂Ŝ

∂t̂n

∣∣∣∣∣
λ̂,x,t,t̂m�=n fixed

. (4.4)

These relations can be verified through the following formulae:

∂vk

∂tn
= res(λkdpBn),

∂v̂k

∂tn
= res(λ̂−kdpBn),

∂vk

∂t̂n
= res(λkdpB̂n),

∂v̂k

∂ t̂n
= res(λ̂−kdpB̂n), (4.5)

∂vk

∂x
= res(λk dp),

∂v̂k

∂x
= res(λ̂−k dp).
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We remark that the compatibility conditions of equations (4.2)–(4.4), namely,

∂p

∂tn
= ∂Bn

∂x
,

∂p

∂t̂n
= ∂B̂n

∂x

are equivalent to the Lax equations (2.4).
Although the integrability of the EdDym hierarchy can be characterized by the functions

S and Ŝ as shown above, however, in contrast to the cases of dKP and dToda, the existence of a
free energy (tau function) for the dDym system is quite restricted. The reason is the following.
Observing that

res(λkdpλn) = res(λ̂−kdpλ̂−n) = 0, k, n � 1

which together with (4.5) implies

∂vk

∂tn
− ∂vn

∂tk
= λk

[1]λ
n
[−1] − λk

[−1]λ
n
[1], (4.6)

∂v̂k

∂t̂n
− ∂v̂n

∂t̂k
= λ̂−k

[−1]λ̂
−n
[1] − λ̂−k

[1] λ̂
−n
[−1], (4.7)

where k, n � 1 and �[k] = ak . The right-hand side of equations (4.6) does not vanish unless
the following equations are fulfilled,

λk
[1]

λk
[−1]

= λ[1]

λ[−1]
= u

u1
, (4.8)

where the Hamiltonian densities λk
[−1] �= 0 provided that uu0u1 �= 0. Using the formula

res(λndpλ) = 0, n > 0 and denoting λn = ∑n
j λn

[j ]p
j we have 0 = res(λndpλ) =

uλn
[−1] − u1λ

n
[1] − · · · − nunλ

n
[n] which together with (4.8) implies that 2u2λ

n
[2] + · · · +

nunλ
n
[n] = 0 for n � 2 and by induction we have un = 0, n � 2. That means

λ = up + u0 + u1p
−1. Similarly, the right-hand side of (4.7) vanishes which leads to

λ̂−1 = p−1 + û0 + û1p. Now taking into account the twistor condition:

λ = λ̂−1 = up + u0 + p−1 (4.9)

which identifies û1 = u, û0 = u0, u1 = 1 and corresponds to the twistor data (f (p, x) =
p, f̂ (p, x) = p−1). As a consequence, the time variables t̂ n can be eliminated via the
identification t̂ n = −tn and (4.9) represents a two-reduction solution for the dDym hierarchy.
Therefore, there exists a potential F(t, x) such that vn = ∂F/∂tn. Note that

∂φ1

∂tn
= −∂vn

∂x
= − ∂2F

∂x∂tn
,

which yields φ1 = −∂F/∂x; however, φ0 defined in (4.1) cannot be expressed as a derivative
of F . To solve this problem, inspired by [23, 32–35], we introduce an extra flow so that all
variables in S function (and hence in Bn) can be expressed in terms of derivatives of F . We
shall see that this extra flow is crucial for obtaining the corresponding dispersionless Hirota
equations.

5. Extra flow and free energy

Let us extend the Lax equation (2.1) by introducing an extra parameter t0 as

∂λ

∂tn
= {Bn, λ}, ∂λ

∂t0
= {B0, λ} (5.1)
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where B0 = (log λ)�2 and the Lax operator λ is defined by (4.9) with u and u0 now being
functions of tn, x and t0. Here we have used the following prescription [32] for log λ to avoid
an appearance of log p:

log(up + u0 + p−1) = 1

2
log(u) +

1

2
log

(
1 +

u0

u
p−1 +

1

u
p−2

)
+

1

2
log(1 + u0p + up2)

where we shall Taylor expand the second term in p−1, whereas in p for the last term.
The dressing formulation is still valid if we extend the dressing function � defined in

(3.2) to include t0 such that

∇t0,�� = −(log λ)�1.

On the other hand, the modified Orlov–Schulman operator M̄ is then defined by

M̄ = ead�

(∑
n=2

ntnp
n−1 + x + t0p

−1

)

=
∞∑

n=2

ntnλ
n−1 +

∫ x 1

u
+ t0λ

−1 +
∑
n=1

vnλ
−n−1

which also satisfies the canonical relation {λ,M̄} = 1. It turns out that M̄ obeys the Lax
flows

∂M̄
∂tn

= {Bn,M̄}, ∂M̄
∂t0

= {B0,M̄}.
Also the conjugate pair (λ,M̄) provides the Darboux coordinate of the associated 2-form
ω = dp ∧ dx +

∑
n=2 dBn ∧ dtn + dB0 ∧ dt0 = dλ ∧ M̄ which implies the existence of a S̄

function such that

dS̄ = M̄ dλ + p dx +
∑
n=2

Bn dtn + B0 dt0

or, equivalently,

M̄ = ∂S̄

∂λ

∣∣∣∣
x,t,t0 fixed

, p = ∂S̄

∂x

∣∣∣∣
λ,t,t0 fixed

,

(5.2)

Bn = ∂S̄

∂tn

∣∣∣∣
λ,x,tm�=n,t0 fixed

, B0 = ∂S̄

∂t0

∣∣∣∣
λ,x,t fixed

.

Using the residue formula res(λkdpλ) = δk,−1 and the expansion for M̄ we have

∂vk

∂x
= res(λk dp),

∂vk

∂tn
= res(λkdpBn),

∂vk

∂t0
= res(λkdpB0) (5.3)

which shows that S̄ is given by

S̄ =
∑
n=2

tnλ
n + φ1λ + φ0 + t0 log λ −

∑
n=1

vn

n
λ−n.

Furthermore, from (5.3) it follows that
∂vk

∂tn
− ∂vn

∂tk
= 0,

∂

∂tn

∂vk

∂t0
− ∂

∂tk

∂vn

∂t0
= 0,

∂

∂tn

∂vk

∂x
− ∂

∂tk

∂vn

∂x
= 0. (5.4)

Hence, from the first equation in (5.4), there exists a function F(x, t0, t) which is the extension
of the previous F to include t0, such that vn = ∂F/∂tn, while by the second and the third there
exist potentials v0 and v̄ such that

∂vn

∂t0
= ∂v0

∂tn
,

∂vn

∂x
= ∂v̄

∂tn
,
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which together with vn = ∂F/∂tn shows that v0 = ∂F/∂t0 = −φ0/2 and v̄ = ∂F/∂x =
−φ1 + t1. Hence, the primary variables can be expressed as

u = − 1

Fxx

, u0 = −2
F0x

Fxx

. (5.5)

Now denoting ∂2F/∂tn∂tm = Fnm, then p,Bn and B0 can be written as

p(λ) = −Fxxλ − 2Fx0 −
∑
m=1

Fxm

m
λ−m,

Bn(λ) = λn − Fnxλ − 2Fn0 −
∑
m=2

Fnm

m
λ−m, (5.6)

B0(λ) = log λ − F0xλ − 2F00 −
∑
m=2

F0m

m
λ−m.

6. Dispersionless Hirota equations

In this section we would like to show that the two-reduction hierarchy flows (5.1) can be
characterized by the second derivatives of F defined by(∑

n=1

λn
[1]

n
µ−n

)
p(λ)

p(µ) − p(λ)
=

∑
n=2

∂pQn(λ)µ−n, (6.1)

where Qn ≡ Bn/n. In other words, the Fnm defined in (5.6) satisfy a set of dispersionless
Hirota equations. To see this, following [22] (see also [1]), let us write (5.2) as

p(λ) = λ

u
− u0

u
−

∑
k=1

1

k

∂vk

∂x
λ−k.

Multiplying both sides by λn−1∂pλ, we have

λn∂pλ = (up(λ) + u0)λ
n−1∂pλ +

∑
j=1

pj+1λ
n−j−1∂pλ,

where pj+1 ≡ u∂xvj/j . Taking the projection ( )�1 we obtain the recurrence relation

∂pQn+1(λ) = (up(λ) + u0)∂pQn(λ) + up(λ)
λn

[1]

n
+

n−2∑
j=1

pj+1∂pQn−j (λ). (6.2)

Multiplying (6.2) by µ−n and summing over n we obtain
µ − (up(λ) + u0) −

∑
j=1

pj+1µ
−j


 ∑

i=2

∂pQi(λ)µ−i =
∑
n=1

up(λ)
λn

[1]

n
µ−n,

which is just (6.1). Substituting p(µ) defined in (5.6) into (6.1) and extracting the equations
corresponding to µ−i , we have

µ−1 :
∂p

∂λ
pu = 1

u

∂Q2

∂λ
,

µ−n :
∂p

∂λ
p

λn
[1]

n
= 1

u

∂Qn+1

∂λ
− u0

u

∂Qn

∂λ
− p

∂Qn

∂λ
−

n−1∑
j=2

1

n − j

∂vn−j

∂x

∂Qj

∂λ
, n � 2.
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Now using (5.6) we can rewrite the above equations in terms of Fnm as

µ−1 : 2FxxF0x +
1

2
F2

xxF2x + Fxx

∑
i=2

(
1

i
− 1

)
Fixλ

−i − 2F0x

∑
i=1

Fixλ
−i−1

− 1

2
F2

xx

∑
i=2

F2iλ
−i−1 −

∑
i,j=1

1

j
FixFjxλ

−i−j−1 = 0,

µ−n :
2

n
FxxF0xFnx +

1

n + 1
F2

xxFn+1,x + Fxx

n−1∑
j=2

1

j (n − j)
Fn−j,xFjx

− 1

n
FxxFnx

∑
i=1

Fixλ
−i − 2

n
F0xFnx

∑
i=1

Fixλ
−i−1

+
1

n
F2

xx

∑
i=2

Fniλ
−i − 1

n + 1
F2

xx

∑
i=2

Fn+1,iλ
−i−1 + Fxx

∑
i=1

1

i
Fixλ

n−i−1

− Fx,x

n−1∑
j=2

1

n − j
Fn−j,xλ

j−1 − 1

n
Fnx

∑
i,j=1

1

i
FixFjxλ

−i−j−1

+
1

n
Fxx

∑
i=1,j=2

1

i
FixFnjλ

−i−j−1 −Fxx

∑
i=2

n−1∑
j=2

1

j (n − j)
Fn−j,xFj,iλ

−i−1 = 0,

n � 2. (6.3)

We list first several of them in appendix A. In fact, the dispersionless Hirota equations provide
a number of relations between the Fnm such that only two of them, say, Fxx and F2x are
independent. For instance,

F0x = −1

4
FxxF2x, F3x = − 3

Fxx

+
3

4
F2

2x, (6.4)

F22 = 2

F2
xx

, F4x = −6F2x

Fxx

+
F3

2x

2
, (6.5)

F23 = 3F2x

F2
xx

,
... · (6.6)

Note that from equations (5.5) and (6.4) we have u0 = F2x/2, whereas (6.5) together with
(6.6) yields

Fyt = 3
2FyyFxy

which is nothing but the (2 + 1)-dimensional dDym equation (2.2). Similarly, other higher
flows can also be extracted from (6.3).

7. Concluding remarks

We have investigated the integrability of the dDym hierarchy through the S function. For
finite-dimensional reductions, surprisingly, the dDym hierarchy can be characterized by a
single function (free energy) only for a two-reduction model with an extra flow added. The
two primary variables of the system can be expressed in terms of second derivatives of the free
energy and the hierarchy flows can be rewritten as a set of dispersionless Hirota equations. Our
results answer the problem concerning the existence of free energy for the dDym hierarchy in
Lax formulation and are consistent with that obtained by the bi-Hamiltonian formulation [10],
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where the two-reduction model can be interpreted as a topological Landau–Ginzburg model.
After identifying the flat coordinates t1 = u0 = F2x/2 and t2 = −1/u = Fxx the free energy
F has the form [10]

F = 1
2 (t1)2t2 − 1

2 log t2

which is contained in the classification of solutions of the WDVV equations by Dubrovin [20]
for two primary fields. This free energy F provides many genus-zero correlation functions
and would be a good starting point to construct the high-genus expansions of the dDym system
(or Whitham hierarchy) in bi-Hamiltonian formulations[21, 36]. We will discuss this issue
elsewhere.
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Appendix. Some equations extracted from (6.3)

In this appendix, we extract dispersionless Hirota equations from (6.3) up to µ−4 and λ−4.

µ−1

λ0 : 2F0x + 1
2FxxF2x = 0,

λ−2 : 1
2FxxF2x + 2F0x = 0,

λ−3 : 2
3FxxF3x + 2F0xF2x + 1

2F
2
xxF22 + 1 = 0,

λ−4 : 2F0xF3x + 3
2F2x + 1

2F
2
xxF23 + 3

4FxxF4x = 0,

µ−2

λ0 : F0xF2x + 1
3FxxF3x + 1 = 0,

λ−2 : 1
2F

2
xxF22 − 1

2FxxF2
2x − F0xF2x + 1

3FxxF3x = 0,

λ−3 : 1
6F

2
xxF23 − 1

2F2x − F0xF2
2x − 1

2FxxF2xF3x + 1
4FxxF4x = 0,

λ−4 : 1
2F

2
xxF24 − 1

3F
2
xxF33 + 1

2FxxF22 − 3
4F

2
2x − F0xF2xF3x

− 1
2F2xFxxF4x + 1

5FxxF5x = 0,

µ−3

λ0 : 2
3F0xF3x + 1

4FxxF4x + F2x = 0,

λ−2 : 1
3F

2
xxF32 − 1

3FxxF2xF3x − 2
3F0xF3x + 1

4FxxF4x = 0,

λ−3 : 1
3F

2
xxF33 − 1

4F
2
xxF42 − 1

3FxxF2
3x − 2

3F3xF0xF2x − 1
3F3x

+ 1
5FxxF5x − 1

2FxxF22 = 0,

λ−4 : 1
12F

2
xxF34 − 2

3F0xF2
3x − 1

2F3xF2x − 1
3FxxF4xF3x + 1

6FxxF6x

− 1
6FxxF23 = 0,
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µ−4

λ0 : 1
2F0xF4x + 1

5FxxF5x + 2
3F3x + 1

4F
2
2x = 0,

λ−2 : 1
4F

2
xxF42 − 1

4FxxF2xF4x − 1
2F0xF4x + 1

5FxxF5x = 0,

λ−3 : 1
4F

2
xxF43 − 1

5F
2
xxF52 − 1

4FxxF3xF4x − 1
2F4xF0xF2x

− 1
4F4x − 1

4FxxF2xF22 − 1
3FxxF32 + 1

6FxxF6x = 0,

λ−4 : 1
4F

2
xxF44 − 1

5F
2
xxF53 − 1

2F4xF0xF3x − 3
8F2xF4x − 1

4FxxF2
4x

+ 1
7FxxF7x + 1

4FxxF42 − 1
4FxxF2xF23 − 1

3FxxF33 = 0.
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